67 research outputs found

    ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins

    Get PDF
    A major problem in structural biology is the recognition of errors in experimental and theoretical models of protein structures. The ProSA program (Protein Structure Analysis) is an established tool which has a large user base and is frequently employed in the refinement and validation of experimental protein structures and in structure prediction and modeling. The analysis of protein structures is generally a difficult and cumbersome exercise. The new service presented here is a straightforward and easy to use extension of the classic ProSA program which exploits the advantages of interactive web-based applications for the display of scores and energy plots that highlight potential problems spotted in protein structures. In particular, the quality scores of a protein are displayed in the context of all known protein structures and problematic parts of a structure are shown and highlighted in a 3D molecule viewer. The service specifically addresses the needs encountered in the validation of protein structures obtained from X-ray analysis, NMR spectroscopy and theoretical calculations. ProSA-web is accessible at https://prosa.services.came.sbg.ac.a

    Self-Consistent Assignment of Asparagine and Glutamine Amide Rotamers in Protein Crystal Structures

    Get PDF
    SummaryThe current protein structure database contains unfavorable Asn/Gln amide rotamers in the order of 20%. Here, we derive a set of self-consistent potential functions to identify and correct unfavorable rotamers. Potentials of mean force for all heavy atoms are compiled from a database of high-resolution protein crystal structures. Starting from erroneous data, a refinement-correction cycle quickly converges to a self-consistent set of potentials. The refinement is entirely driven by the deposited structure data and does not involve any assumptions on molecular interactions or any artificial constraints. The refined potentials obtained in this way identify unfavorable rotamers with high confidence. Since the state of Asn/Gln rotamers is largely determined by hydrogen bond interactions, the features of the respective potentials are of interest in terms of molecular interactions, protein structure refinement, and prediction. The Asn/Gln rotamer assignment is available as a public web service intended to support protein structure refinement and modeling

    QSCOP-BLAST—fast retrieval of quantified structural information for protein sequences of unknown structure

    Get PDF
    QSCOP is a quantitative structural classification of proteins which distinguishes itself from other classifications by two essential properties: (i) QSCOP is concurrent with the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank and (ii) QSCOP covers the widely used SCOP classification with layers of quantitative structural information. The QSCOP-BLAST web server presented here combines the BLAST sequence search engine with QSCOP to retrieve, for a given query sequence, all structural information currently available. The resulting search engine is reliable in terms of the quality of results obtained, and it is efficient in that results are displayed instantaneously. The hierarchical organization of QSCOP is used to control the redundancy and diversity of the retrieved hits with the benefit that the often cumbersome and difficult interpretation of search results is an intuitive and straightforward exercise. We demonstrate the use of QSCOP-BLAST by example. The server is accessible at http://qscop-blast.services.came.sbg.ac.at

    Detecting Repetitions and Periodicities in Proteins by Tiling the Structural Space

    Full text link
    The notion of energy landscapes provides conceptual tools for understanding the complexities of protein folding and function. Energy Landscape Theory indicates that it is much easier to find sequences that satisfy the "Principle of Minimal Frustration" when the folded structure is symmetric (Wolynes, P. G. Symmetry and the Energy Landscapes of Biomolecules. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14249-14255). Similarly, repeats and structural mosaics may be fundamentally related to landscapes with multiple embedded funnels. Here we present analytical tools to detect and compare structural repetitions in protein molecules. By an exhaustive analysis of the distribution of structural repeats using a robust metric we define those portions of a protein molecule that best describe the overall structure as a tessellation of basic units. The patterns produced by such tessellations provide intuitive representations of the repeating regions and their association towards higher order arrangements. We find that some protein architectures can be described as nearly periodic, while in others clear separations between repetitions exist. Since the method is independent of amino acid sequence information we can identify structural units that can be encoded by a variety of distinct amino acid sequences

    Detection of unrealistic molecular environments in protein structures based on expected electron densities

    Get PDF
    Understanding the relationship between protein structure and biological function is a central theme in structural biology. Advances are severely hampered by errors in experimentally determined protein structures. Detection and correction of such errors is therefore of utmost importance. Electron densities in molecular structures obey certain rules which depend on the molecular environment. Here we present and discuss a new approach that relates electron densities computed from a structural model to densities expected from prior observations on identical or closely related molecular environments. Strong deviations of computed from expected densities reveal unrealistic molecular structures. Most importantly, structure analysis and error detection are independent of experimental data and hence may be applied to any structural model. The comparison to state-of-the-art methods reveals that our approach is able to identify errors that formerly remained undetected. The new technique, called RefDens, is accessible as a public web service at http://refdens.services.came.sbg.ac.at

    Detecting repetitions and periodicities in proteins by tiling the structural space

    Get PDF
    The notion of energy landscapes provides conceptual tools for understanding the complexities of protein folding and function. Energy landscape theory indicates that it is much easier to find sequences that satisfy the “Principle of Minimal Frustration” when the folded structure is symmetric (Wolynes, P. G. Symmetry and the Energy Landscapes of Biomolecules. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14249–14255). Similarly, repeats and structural mosaics may be fundamentally related to landscapes with multiple embedded funnels. Here we present analytical tools to detect and compare structural repetitions in protein molecules. By an exhaustive analysis of the distribution of structural repeats using a robust metric, we define those portions of a protein molecule that best describe the overall structure as a tessellation of basic units. The patterns produced by such tessellations provide intuitive representations of the repeating regions and their association toward higher order arrangements. We find that some protein architectures can be described as nearly periodic, while in others clear separations between repetitions exist. Since the method is independent of amino acid sequence information, we can identify structural units that can be encoded by a variety of distinct amino acid sequences.Fil: Parra, Rodrigo Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Espada, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sánchez Miguel, Ignacio Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sippl, Manfred J.. Universität Salzburg; AustriaFil: Ferreiro, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Lestaurtinib Inhibits Histone Phosphorylation and Androgen-Dependent Gene Expression in Prostate Cancer Cells

    Get PDF
    Background: Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1) phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition. Methodology/Principal Finding: Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701) as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta) protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells. Conclusions/Significance: Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK

    Who solved the protein folding problem?

    No full text
    corecore